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2 Introduction
This paper will explore the design and implementation of the new point cloud registration
algorithm for CERN Robotics Framework (CRF) in C++. This project is initiated for the
reason that, the old point cloud registration algorithm has a large codebase, and has numerous
parameters to be tuned. These lead to an integration problem with the whole framework.
Point cloud registration is the process of finding a transformation that aligns two point clouds.
Here, the main use case is mapping and reconstructing a 3D environment. Therefore, the
transformation comprises the 3D spatial rotation and the 3D spatial translation. The aligned
point cloud should resemble the object or environment that sensors are trying to capture. In
robotics, the transformation can be obtained from something like a sensor mounted on an end-
effector of a manipulator. In fact, a Train Inspection Monorail (TIM) robot is an excellent
candidate for mapping a tunnel at CERN. However, most of the time, like every mobile robotics
application, the positioning sensor reading can be inaccurate or prone to integration drifting,
and sensors noise. That is where the point cloud registration can enhance the accuracy of the
robot’s odometry. Moreover, the by-product of this action is a 3D map of the environment,
which can benefit several Virtual Reality (VR), Augmented Reality (AR), or Mixed Reality
(MR) researches. Nowadays, there are various researches about point cloud registration owing
to a recent leap in the processing capability of microprocessors and affordability. Therefore, it
is fitting to explore more point cloud registration algorithms; so that the new algorithm can
improve upon existing ones.

2.1 Previous Works
2.1.1 Iterative Closest Point

ICP uses the least square optimisation to find the transformation that matches multiple captures
of point cloud. After algebraic manipulation, e.g. relative translation, the problem can be solved
with Singular Value Decomposition (SVD) seen in (2).

R∗ = argmin
R∈SO(3)

∑
i

R(yi − ȳ)− (xi − x̄) (1)

H =
∑
i

(yi − ȳ)(xi − x̄)⊤

SV D(H) = UΘV⊤

R∗ = VU⊤

(2)

Where xi and yi are two sets of the point cloud that we are trying to match. x̄ and ȳ
are “centroids” of corresponding clouds. Nevertheless, with no way to know the actual corre-
spondence, the algorithm needs to be solved iteratively, hence the “Iterative” in ICP. With the
optimisation problem in (1), outliers can hugely impact the result. Moreover, Intel Realsense has
an irregularly high magnitude noise floor. These contribute to the lower performance of the point
cloud registration. The algorithm also does not perform well when matching a scene with a low
overlapping area since the algorithm massively relies on the closest point as a correspondence.

To mitigate those shortcomings of the ICP algorithm. Several measures can further generalise
the cost function to not be based on just the distances of (esitimated) correspondent points, such
as the Coherent Point Drift (CPD) algorithm. For more information about Iterative Closest
Point Algorithm, I recommend this lecture by Prof. Russ Tedrake from Massachusetts Institute
of Technology.

2.1.2 Google’s Cartographer

Google’s Cartographer, based on [2], is a popular library among the open-source mobile robotics
community. The library comes with great performance, demonstrated in various datasets. How-
ever, the problem is its dependencies and ease of integration. If I want to use it in the CRF many
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dependencies are redundant e.g. Ceres Solver, the ROS PCL (not the same as the standalone
PCL), and Protobuf (we only use a little portion of the library in *.pbstream file.) Google
Cartographer seem promising in the video showcase that shows mapping in a huge environment
like Deutsche Museum. Unfortunately, Cartographer is not well tested on the Intel Realsense
Camera, and a 3D mapping application, generally. Besides, the fact that Google’s Cartographer
is deeply integrated with the Robot Operating System (ROS) make the integration with the
CERN Robotics Framework (CRF) more intricate.

2.1.3 SSL-SLAM

The algorithm in SSL-SLAM [5] uses edges and planes to register point clouds. In this paper,
the more aggressive surface can be separated by calculating a difference in-depth for each point
and its neighbours. This approach is implemented with a 3D solid-state LiDAR, specifically,
Intel Realsense L515, which supplies an organized point cloud (M ×N × 3) as an output, where
M and N is the resolution of the recorded point cloud in the y-axis and the x-axis, respectively.
However, with some adjustment, this approach can be used with an unorganized point cloud
(M × 3) which occupy less memory space (since it is dense) and supports more sensor types,
where, now, M is the number of points in the point cloud. After separating edge points, what
is left will be called “plane points.” For every edge and plane point, the residual value can be
calculated from neighbouring points of the same type in the target point cloud. This limit the
correspondence of each point to be the same type of point, which in turn reduce the chance of
being stuck in local minima.

2.1.4 More Interesting Algorithms

Git Repo Video
SSL_SLAM https://www.youtube.com/watch?v=iiKew-wplAo
A-LOAM https://www.youtube.com/watch?v=N4QF5VNuoxw
Cartographer https://www.youtube.com/watch?v=uNlPf8SBlsk
BLAM https://www.youtube.com/watch?v=08GTGfNneCI
LIO-SLAM https://www.youtube.com/watch?v=BtQHSkydiS0
RTAB_ROS https://www.youtube.com/watch?v=qpTS7kg9J3A

3 Proposed Algorithm
The proposed algorithm is based on the algorithm in [5] and another research on edge extraction
algorithm for unorganized point cloud [1].

3.1 Edge Extraction
A covariance matrix is a symmetric, positive-semidefinite, square matrix that is used to explain
variance in multiple dimensions. These research papers, [3], [4], [1], use eigenanalysis of the
covariance matrix of neighbouring points to calculate a surface variation value of the surface.

First, for each point (pk), the covariance matrix is constructed from a set of its neighbouring
point (Pn

k ), where Pn
k = {pn

1 ,p
n
2 ,p

n
3 , . . . ,p

n
N}∀k ∈ K, N is the number of neighbouring points,

and K is the index set of each point in the target point cloud. The covariance matrix of Pn
k can

be computed by

C(Pn
k ) =

cov(x, x) cov(y, x) cov(z, x)
cov(x, y) cov(y, y) cov(z, y)
cov(x, z) cov(y, z) cov(z, z)

 (3)
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cov(a, b) =
1

N

N∑
i=1

((pn,ai − p̄n,ai )(pn,bi − p̄n,bi )) (4)

where pn,a(·) is an a element of pn
(·) and in this case, a, b ∈ {x, y, z}. The eigenvalues of this 3-

by-3 matrix can be computed. Now, three eigenvalues are obtained from this matrix denoted by
λ0(C(·)), λ1(C(·)), λ2(C(·)) where λ0(C(·)) ≤ λ1(C(·)) ≤ λ2(C(·)). Lastly, the surface variation
(σi) of the point pk can be calculated from

σi(Pn
k ) =

λ0

λ0 + λ1 + λ2
(5)

Then, this value, σi can be used to classify between edge points and plane points, in this
application. A point with a high σi value indicates a sharper or rougher surface.

3.2 Computing Residual
After computing all the surface variation in the input point cloud (Pi), the input point cloud can
be separated to the edge cloud (Pε

i ) and the plane cloud (Pρ
i ). The residual function is taken

from [5] as seen below.

fε(p) =
∥(p− pε

2)× (p− pε
1)∥

∥pε
1 − pε

2∥
(6)

fρ(p) =

∥∥∥∥(p− pρ
1)

⊤ · (pρ
1 − pρ

2)× (pρ
1 − pρ

3)

∥(pρ
1 − pρ

2)× (pρ
1 − pρ

3)∥

∥∥∥∥ (7)

fε(·) and fρ(·) is the residual function of the edge point and the plane point, respectively.
Note that the input of the residual function must be the transformed point. pε

(·), and pρ
(·) are the

neighbouring points of an edge point and the neighbouring points of a plane point, respectively
(pε

(·), and pρ
(·) belong to the target point cloud). These neighbouring points are obtained from

K-D trees of the target point cloud by using a transformed point in the source point cloud as a
searching point.

3.3 Cosntructing a Non-linear Least Square Problem
To correctly register the input point cloud (P), the transformation from the input point cloud’s
local coordinate frame to the target point cloud’s local coordinate frame must be known. The
result of the residual functions from the last section can be minimised to find the optimal
transformation. Now, the cost function for the optimisation problem can be constructed.

⟨t∗i ,R∗
i ⟩ = argmin

ti∈R3,Ri∈SO(3)

∑
p∈Pε

i

fε(Rip+ ti) +
∑
p∈Pρ

i

fρ(Rip+ ti) (8)

Furthermore, Lie theory is used here to eliminate the constraint that would be present in
the 3D rigid body rotation such as in Special Orthogonal Group (SO(3)). The optimisation
technique will be discussed again in section 4.2.
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4 C++ Implementation
4.1 Edge Extraction
The code is rewritten from the code from [1] since it is unreadable, and contain many unused
lines of code. The procedure is straightforward. First, a K Dimensional Tree (K-D Tree) is
constructed from an input point cloud. In this case, the K-D tree has 3 dimensions - X, Y , and
Z. Next, neighbouring points is obtained by searching in the K-D tree.

Figure 1: The edge extraction algorithm block diagram (only for a single point).

// Location: modules/Utility/VisionUtility2/.../Edge.hpp
for (std::size_t i = 0; i < inputCloud->points.size(); i++) {

searchPoint = inputCloudXYZ->points[i];
kdTree.nearestKSearch(searchPoint, kNeighbour, neighbourKdTree,

neighbourKdTreeEuclideanDist);

This procedure will be applied to every point in the input point cloud, hence the for-loop.
kNeighbour is the number of neighbouring points. The effect of varying kNeighbour can be
seen is figs. 3. Next, from (4), the average position of each axis (p̄n,ai and p̄n,bi ) is computed.

// Location: modules/Utility/VisionUtility2/.../Edge.hpp
for (std::size_t i = 0; i < inputCloud->points.size(); i++) {

...
for (std::size_t j = 0; j < neighbourKdTree.size(); j++) {

pcl::PointXYZ neighbourPoint = inputCloudXYZ->points[neighbourKdTree[j]];
xSum += neighbourPoint.x;
ySum += neighbourPoint.y;
zSum += neighbourPoint.z;

}
float xMean = xSum/kNeighbour;
float yMean = ySum/kNeighbour;
float zMean = zSum/kNeighbour;
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After that, variances and covariances are computed and assigned to the covariance matrix.

// Location: modules/Utility/VisionUtility2/.../Edge.hpp
for (std::size_t i = 0; i < inputCloud->points.size(); i++) {

...
for (std::size_t j = 0; j < neighbourKdTree.size(); j++) {

pcl::PointXYZ neighbourPoint =
inputCloudXYZ->points[neighbourKdTree[j]];

// Compute variance of X, Y, and Z
xxSum += (neighbourPoint.x - xMean) * (neighbourPoint.x - xMean);
yySum += (neighbourPoint.y - yMean) * (neighbourPoint.y - yMean);
zzSum += (neighbourPoint.z - zMean) * (neighbourPoint.z - zMean);

// Compute covatiance of XY, YX, XZ, ZX, YZ, and ZY
xySum += (neighbourPoint.x - xMean) * (neighbourPoint.y - yMean);
xzSum += (neighbourPoint.x - xMean) * (neighbourPoint.z - zMean);
yzSum += (neighbourPoint.y - yMean) * (neighbourPoint.z - zMean);

}

float varX = xxSum/kNeighbour;
float varY = yySum/kNeighbour;
float varZ = zzSum/kNeighbour;
float covXY = xySum/kNeighbour;
float covXZ = xzSum/kNeighbour;
float covYZ = yzSum/kNeighbour;

Eigen::Matrix3f covarianceMatrix;
covarianceMatrix << varX, covXY, covXZ,

covXY, varY, covYZ,
covXZ, covYZ, varZ;

Lastly, eigenvalues are obtained from Eigen::SelfAdjointEigenSolver function. Eigenval-
ues are sorted and the surface variation value (σi) is calculated using (5). The result is stored
in a newly created type of point called PointXYZS, and S can be abbreviated from sharpness,
surface variation, or sigma.

// Location: modules/Utility/VisionUtility2/.../PointTypes.hpp
struct PointXYZS {

PCL_ADD_POINT4D;
float s;
bool isEdge(float sigmaThreshold) {return s >= sigmaThreshold;}
bool isPlane(float sigmaThreshold) {return s < sigmaThreshold;}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW

} EIGEN_ALIGN16;

This point type has a method that can be used to separate the procedure between edge points
and plane points, as seen below.

using namespace cern::utility::visionutility::pointcloud::pointtypes;
pointtypes::PointXYZS new_point(1.0, 3.0, 0.3, 0.04);
if (new_point.isEdge(0.025) {

// calculate edge residual
} else {

// calculate plane residual
}
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In this case, new_point will be classified as an edge point since S (the last value in the
constructor, 0.04) is greater than the threshold (0.025). The value that separate between edge
and plane in the code is generally refers as a simgaThreshold (σt).

Finally, the algorithm is ready to extract edge features from a point cloud. To understand
the effect of each parameter, edge point and plane point are separated by colour and plotted.
The red coloured point is the former, and the whites are for the latter. In subfigure 3a, there
are too few neighbours to calculate a surface variation value. The algorithm picks up little
change in the surface as edges, this might be useful in measuring a surface roughness; however,
not in finding edge features. For the higher kNeighbour value, edge features lose the definition
and seem “blurred”. Yet, the correlation between how edge features looks and the registration
accuracy has not been investigated. However, the time execution time of the function is effect
tremendously by the number of neighbours. A large number of neighbours increase the K-D
tree’s search time and covariance matrix computation time.

Figure 2: The original point cloud.

(a) kNeighbour = 10,
sigmaThreshold = 0.1

(b) kNeighbour = 25,
sigmaThreshold = 0.1

(c) kNeighbour = 50,
sigmaThreshold = 0.1

(d) kNeighbour = 100,
sigmaThreshold = 0.1

(e) kNeighbour = 200,
sigmaThreshold = 0.1

(f) kNeighbour = 400,
sigmaThreshold = 0.1

Figure 3: The comparison between multiple kNeighbour values

sigmaThreshold also affect the appearance of edge features as seen in fig. 4. When the
sigmThreshold increases, edge features appear thinner. In contrast, when the simgaThreshold
decreases, edge features appear thicker. This action does not seem to increase the background
noise as much as changing the kNeighbour value.

When deploying the application, the sigmaThreshold and kNeighbour must be tuned indi-
vidually. If both values are combined, the tuning procedure should be more trivial and may result
in more consistent edge features between multiple frames, which lead to a better match. Another
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(a) kNeighbour = 125,
sigmaThreshold = 0.075

(b) kNeighbour = 125,
sigmaThreshold = 0.1

(c) kNeighbour = 125,
sigmaThreshold = 0.15

Figure 4: The comparison between multiple sigmThreshold values

easy way to potentially improve the tuning procedure is by normalising a sigmaThreshold value
between the lower-bound and the upper-bound of the surface variation value. A correlation
between those parameters and the number of edge points “blob” can also be used to improve
the algorithm by automatically find the optimal parameters. Analysing an edge point cloud’s
morphological skeleton might give some insight too.

4.2 Computing Residual
In this part, the code is mostly rewritten from this repository [5] and Ceres Solver references.
The repository is written for Robot Operating System (ROS). The repository implementation
of this part is a bit questionable. For instance, the whole point cloud is transformed before
adding a residual block to the Ceres Solver. This means, when the optimiser increments decision
variables, the position of the neighbouring point indices do not get updated. Therefore, the
author needs to iterate over the optimiser again, which is inefficient and slow. To visualise the
problem, I interpret the author’s original source code in algorithm 1.

Algorithm 1 SSL_SLAM
INPUTS: Rinit, tinit, P
OUTPUTS: R∗, t∗

k ← 1
R1 ← Rinit

t1 ← tinit
while k ≤ N do

for pi ∈ P do
p′
i ← Rkpi + tk

Find p′
i edge neighbours and plane neighbours.

if pi ∈ Pε then
Add edge residual block (fε(p

′
i),∇fε(p′

i))
else if pi ∈ Pρ then

Add plane residual block (fρ(p
′
i),∇fρ(p′

i))
end if

end for
Solve for the optimal decision variable: (R∗

k, t∗k)
Rk+1 ← R∗

k

tk+1 ← t∗k
k ← k + 1

end while
R∗ ← R∗

k

t∗ ← t∗t

For our application, I rearrange the process such that, the transformation gets update cor-
rectly (algorithm 2). In contrary to the algorithm 1, our algorithm searches for the neighbouring
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points every time the residual block is evaluated rather than searching for neighbours when once
when residual block is added. This remove unnecessarily iteration over the nonlinear least square
solver.

Algorithm 2 New Algorithm
INPUTS: Rinit, tinit,P
OUTPUTS: R∗, t∗

R← Rinit

t← tinit
for pi ∈ P do

if pi ∈ Pε then
Add edge residual block (fε(Rpi + t),∇fε(Rpi + t))

else if pi ∈ Pρ then
Add plane residual block (fρ(Rpi + t),∇fρ(Rpi + t))

end if
end for
Solve for the optimal decision variable: (R∗, t∗)
(find neighbours every time the residual block is called)

Note that, in the 2, the transformation of the current point happens internally every single
function call. Although, the original algorithm has few advantages, such as if the residual value
is invalid, the residual block is discarded in advance. In contrary, this approach is also prone to
edge cases, for instance when either the denominator of (6) or the denominator of (7) is near
zero, the function may return a NaN. If the number of residual blocks in the Ceres Library is
modifiable after the optimisation procedure is initiated, the fix would be trivial. Unfortunately,
that is not the case. Hence, I implement a guard after the residual is calculated; in another
word, the residual is checked first whether it is a NaN or not. If it is, the value is set to zero,
since the occurrence of that edge case is relatively rare, and it is usually a few points against
thousands. A better workaround in the future is appreciated. Finally, the algorithm can be seen
in algorithm 3.

Algorithm 3 New Algorithm with Guards
INPUTS: Rinit, tinit,P
OUTPUTS: R∗, t∗

R← Rinit

t← tinit
for pi ∈ Pi do

if pi ∈ Pε then
η ← ⟨fε(Rpi + t), fε(Rpi + t)⟩
if η is NaN then
η = ⟨0,0⟩

end if
Add edge residual block (η)

else if pi ∈ Pρ then
η ← ⟨fρ(Rpi + t),∇fρ(Rpi + t)⟩
if η is NaN then
η = ⟨0,0⟩

end if
Add plane residual block (η)

end if
end for
Solve for the optimal decision variable: (R∗, t∗)
(find neighbours every time the residual block is called)
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4.3 Solving a Nonlinear Least Square Problem
After adding all the residuals, the nonlinear least square problem must be solved. The Levenberg-
Marquardt algorithm from Google’s Ceres Solver is used here due to its ability to solve a large-
scale nonlinear least square problem fast. Furthermore, the library is specifically designed for
this type of application e.g. point cloud registration, and pose graph optimisation. In fact,
Google’s Cartographer is also implemented with the Ceres Solver. To optimise the 3D spatial
transformation of a rigid body there are two parts of the decision variable, namely orientation,
and translation. The translation is simple; however, the 3D orientation must be incremented by
a rotation matrix. Though this comes with a caveat, as stated in section 3.3, a rotation matrix
is a SO(3) group. To be considered as a SO(3) group the matrix shall inherit these properties

A ∈ R3×3, A⊤A = AA⊤ = I3, and detA = 1 (9)

This can add complexity to the problem because with the cost function from (8), the problem
becomes nonlinear constrained optimisation. This problem can be alleviated by using a Lie group
of the SO(3) group, so(3) group. This Lie group is also a 3 by 3 matrix (so(3) ∈ R3×3) and
is a skew-symmetric matrix. This can help us because the matrix exponential of any member
of a Lie group of SO(3) is guaranteed to be a rotation matrix. Moreover, any Lie group has
a tangent space, which in this case, the space can be represented in a three-element vector
(12). This vector can be utilised in the optimisation procedure. Now, the incrementation of the
decision variables can be computed by a vector in the tangent space of the Lie group so(3) (ω),
and a change in the position (∆t). The relationship between the tangent-space vector and the
Lie group can be seen in (12) and (13). For more information about Lie theory in robotics, I
recommend this lecture by Prof. Joan Solà from Universitat Politècnica de Catalunya.

R′ = e[ω]×R (10)

t′ = R′∆t+ t (11)

ω =

ωx

ωy

ωz

 (12)

[ω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (13)

3-by-3 skew-symmetric matrix can be created from a vector easily by using the Eigen library.
I wrote a simple function called cpm3() (cross-product matrix 3D) in MathUtility for this
purpose.

// Location: modules/Applications/PcMapper/src/SigmaSolver.cpp
namespace linalg = cern::utility::mathutility::linearalgebra;
// Exponential mapping
delta_q = Eigen::Quaterniond((linalg::cpm3(omega)).exp());
// Apply exponential map to the existing quaternion
quater_plus = (delta_q * quater).normalized();
trans_plus = (quater_plus * delta_t) + trans;

Even though the optimisation problem in (8) uses a rotation matrix to rotate a point cloud,
it is not efficient to use 9 values to explain a three-dimensional orientation. The rotation matrix
can also suffer from accumulated errors for the same reason. Euler angles are off the choice since
they can suffer from singularities. Therefore, a unit quaternion is used in the implementation in
place of a rotation matrix. Be aware that the multiplication of the quaternion in the code is not
literal, this is merely a syntax in the Eigen library. The quaternion can be constructed with a
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rotation matrix; so, delta_q is just e[ω]× from (10) in the form of a unit quaternion. In [5], the
authors increment the decision variables by using the Euler angles to rotate a unit quaternion.
The implementation here is cleaner, faster, and the final cost is lower.

5 Preliminary Result
Unfortunately, I do not have any time left to do an in-depth comparison between various existing
algorithms, or comparing results with established scores. Therefore, I compare the SigmaSolver
with the PCL’s built-in Iterative Closest Point Algorithm. The input is a pair of point clouds
that subsampled to around 1,600 points. Then, the source point cloud is artificially transformed
by rotating −0.6 rad in the z-axis and translate 1m in the x-axis with respect to the global
coordinate frame. The exact transformation matrix in (14), which resulted in fig. 5. ICP, and
SigmaSolver use their default value.

Ta =


cos(0.6) − sin(0.6) 0 1
sin(0.6) cos(0.6) 0 0

0 0 1 0
0 0 0 1

 (14)

Figure 5: A matching demonstration with a fake transformation.

Next, I plot the result with a transformation that is obtained from (8). Essentially, it is just
transforming a local coordinate frame of the source point cloud (P2) to the local coordinate frame
of the target point cloud (P1). Until here, we use Rp+t to transform the point cloud. However,
in the implementation, the transformation is usually stored as a homogeneous transformation
matrix, which can also transform the point cloud and equivalent to Rp + t. The equation can
be seen in (15).

p′ =

[
R∗ t∗

0 1

] [
p
1

]
∀p ∈ P2 (15)

#include <pcl/common/transforms.hpp>
pcl::PointCloud<pcl::PointXYZRGB> P1;
pcl::PointCloud<pcl::PointXYZRGB> P1_prime;

pcl::transformPointCloud(P1, P1_prime, tf_optimal); //tf_optimal is an Eigen::Affine3d

ICP took 0.012 s, and SigmaSolver took 0.097 s. Around 80% of the execution time of
SigmaSolver came from the edge extraction process. Therefore, if real-time behaviour is desired,
the improvement in the edge extraction speed should be prioritised. Now, we push the algorithm
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(a) Matching done with the ICP (b) Matching done with the SigmaSolver

Figure 6: The comparison between ICP and SigmaSolver

(a) Matching done with the ICP (b) Matching done with the SigmaSolver

Figure 7: The comparison between ICP and SigmaSolver with a point cloud that is further
away.

harder by using a source point cloud with less overlap area since ICP usually perform poorly on
this kind of application.

Lastly, I tried mapping sequentially without odometry data. Point clouds can be visualised
by transforming each point cloud’s local coordinate frame to the global coordinate frame, in this
case, it is the local coordinate frame of the first point cloud. Algorithm 4 shows how to plot
point clouds that are matched sequentially. The algorithm performs well, and the result can be
seen in figs. 8 and 9.

Algorithm 4 Simple Sequential Mapping
i← 1
T← Tinit

while i ≤ pointCloudNum do
Solve for: T∗ (from Algorithm 3)
T← TT∗

for all p ∈ Pi and p′ ∈ P ′
i do

[p′ 1]⊤ ← T[p 1]⊤

end for
Plot: P ′

i

i← i+ 1
end while

One last note, matching between edge features help the point cloud registration algorithm by
artificially create a correspondence guide for point clouds; e.g. edge point can not be matched
with a plane point, vice versa. This can be exploited a little more by using a plane fitting
technique to add another means of creating correspondence from semantics features.

11



Figure 8: A simple mapping of a living room.

Figure 9: A simple mapping of a living room.

6 Conclusion
The new point cloud registration algorithm is designed and implemented. The algorithm uses
edge features of the input point clouds to solve for the optimal transformation matrix. The
proposed algorithm performs well compared to the Point Cloud Library’s ICP algorithm; how-
ever, with more computation time. This algorithm is implemented in C++, then integrated
into the CERN Robotics Framework. The resulting codebase needs fewer parameters compared
to the predecessor (3DMapper). However, the algorithm has not been extensively tested and
benchmarked with many other algorithms, which is advised to do so, in the future. The pro-
posed algorithm can be further improved in several ways. First, optimising the edge extraction
algorithm can make this algorithm runs substantially faster since the most computational time
is taken in the edge extraction process. The plane can be fitted to further separate the point
cloud correspondence which in turn should reduce the chance of the optimiser stuck in local min-
ima. This can also be done to edge points by separating them by the blob. Lastly, the residual
function can be simplified. In the current state, the residual function is taken from [5], which is
hard to compute and nonlinear. The closest point error as in ICP or probabilistic method as in
the coherent point drift might give a comparable result with better time complexity.
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7 PcMapper Module Documentation
A copy of the repository’s README.md file.

The module comprises two main classes, PcSolver (Point Cloud Solver), and PcMappingManager
(Point Cloud Mapping Manager). PcSolver class only has one purpose, get the transformation
matrix that transforms the coordinate frame of the source point cloud to the coordinate frame
of the target point cloud. However, PcSolver is just a base class, to solve for the transforma-
tion, one of the derived classes must be used. For example, SigmaSolver uses edge features
to match between two point clouds. It is possible to write more solvers and put them into the
/include/solver folder.

The PcMappingManager does a high-level mapping procedure, for instance, integrating trans-
formations of each scan to get the current pose (useful for mobile robotics). There is not much
feature in this class at the moment. Though, in the future, something like pose graph optimi-
sation, occupancy grid construction, or pose extrapolation can be implemented here (functions
that are helpful in mapping/SLAM and invariant to the solver algorithm).

7.1 Dependencies
7.1.1 External

• Ceres Solver: Solving a nonlinear least square problem

• Point Cloud Library (pcl): Point cloud manipulation

• Eigen: Linear algebr

• Niels Nlohmann’s JSON: Configuration file

7.1.2 Modules, Utilities

• MathUtility: Converting a vector to a skew-symmetric matrix

• VisionUtility2: Point cloud’s edge extraction

• EventLogger: Logging

7.2 Example Usage
Create a PcMappingManager object for PointXYZRGB point type.

#include "PcMapper/PcMappingManager.hpp"
#include "PcMapper/SigmaSolver.hpp"

namespace pcmapper = cern::applications::pcmapper;

pcmapper::PcMappingManager<pcl::PointXYZRGB> manager;

Set the SigmaSolver as a solver. Then, load the configuration file.

manager.setSolver(new pcmapper::SigmaSolver<pcl::PointXYZRGB, pcl::PointXYZRGB>);
manager.loadConfigFile(argv[2]);

Setup the first point cloud with an initial transformation from the global coordinate frame
(tf_initial). However, the initial frame also can be set automatically if the buffer is empty.

manager.setInitialFrame(p_pc_a, tf_initial);
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Append point cloud in the buffer. This internally solves for the transformation matrix

manager.appendPointCloud(p_pc_b, tf_guess);

Now, you can get the current transformation (a transformation matrix between the current
point cloud and the last one) by calling

Eigen::Affine3d output = manager.getCurrentTransformation()

or get the current pose (a transformation matrix between the current point cloud and the
global coordinate frame)

Eigen::Affine3d output = manager.getCurrentPose()

or get every transformation

std::deque<Eigen::Affine3d> output = manager.getTransformationList()

7.2.1 PcSolver Standalone Usage

In fact, the PcSolver derived classes are designed to be a standalone application. The usage is
similar to the PCL’s ICP. First, set the source and target point clouds.

#include "PcMapper/SigmaSolver.hpp"

namespace pcmapper = cern::applications::pcmapper;

pcmapper::SigmaSolver<pcl::PointXYZRGB, pcl::PointXYZRGB> solver;

solver.setInputSource(point_cloud_1);
solver.setInputTarget(point_cloud_2);

We have not loaded the configuration, it should use the default values. Then, we can get a
transformation by running:

Eigen::Affine3d ouput = solver.solveTransform(transformation_guess);

7.3 Configuration File Format (JSON)
7.3.1 PcSolver Derived Classes

Configuration must have a "pc_solver" field, and in that file, there must exist a "type" field that
has the same value as the class name in snake-case. For example, if we have a GenericSolver
class, the JSON file must contain

}
"pc_solver": {

"type": "generic_solver",
...

}
}

because we can not guarantee the same configuration across various PcSolver derived classes.
Another field that should be filled is the "name" field; so that we can extinguish between other
configurations in runtime.
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7.3.2 PcMappingManager

Currently, PcMappingManager does not have any important configs. The JSON file must have
a "pc_mapping_manager" field. Currently, "window_size" just increases the buffer (sliding
window) size and "extrapolation" is for the future.
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