

I

PREFACE

 This report is the outcome of the CERN Summer Student Programme 2021, organized
virtually by CERN starting from July 5 to August 27, 2021. The objectives of this report are
to provide an introduction of my attended program, to express my experience throughout the
program and to explain the technical detail of my project.

 I highly hope that this report will give beneficial and inspirational information to
readers. Though I tried my best to keep this report error free, I apologize if any error was
found which was not deliberately made. Please do not hesitate to contact me if any questions
arise.

Chanchana Wicha

II

ACKNOWLEDGEMENTS

 The author is appreciatively aware of his royal grace in Her Royal Highness Princess
Maha Chakri Sirindhorn bestowed the opportunity to be a representative of Thai students
participating in the CERN Summer Student Programme 2021.

 I would like to take this opportunity to give my special thanks to Dr. Unchalisa
Taetragool, my advisor of the department of computer engineering, King Mongkut’s
University of Technology Thonburi, for giving me valuable suggestions and knowledge and
always supporting me throughout the program.

 Beside my university’s advisor, I am extremely thankful to my CERN Summer
Student Programme supervisors, Justinas Rumsevicius and Chayanit Asawatangtrakuldee
who gave me a golden opportunity to do this project as well as gave me valuable comments
and suggestions that led to the completeness of this project.

 Also, this summer program could not be completed without Dr. Norraphat
Srimanobhas and Mrs. Umaratchani Kaewbutta, who coordinate and provide precise
information throughout the program.

 I also would like to thank the Synchrotron Light Research Institute for holding an
informative preparation training session which provided valuable knowledge. Lastly, I
gratefully appreciate all the hard work of related coordinators and institutes that support this
program.

III

TABLE OF CONTENTS

PREFACE I

ACKNOWLEDGEMENTS II

TABLE OF CONTENTS III

TABLE OF FIGURES IV

Chapter 1 Introduction 1

Chapter 2 Experiences 2

Chapter 3 Technical Report 3

3.1 Abstract 3

3.2 Introduction 3

3.3 Acknowledgements 3

3.4 Technologies 4

3.5 Methodology 4

3.6 Result 8

3.7 Conclusion 10

IV

TABLE OF FIGURES

Figure 1: Use-case Diagram 5

Figure 2: System Architecture 6

Figure 3: ORM Usage Example 6

Figure 4: All Campaign Page User Interface 8

Figure 5: Report Editor User Interface 8

Figure 6: Report Comment Section User Interface 9

Figure 7: User Permission Management Page User Interface 9

1

Chapter 1
Introduction

 CERN Summer Student Programme 2021 is a summer internship program that gives
an opportunity to physics and computer engineering students who want to contribute their
passion with one of the world's largest and most respected centers for scientific research. Due
to the COVID-19 situation, the program is held virtually for this year. However, there are
many interesting virtual activities and lectures packed throughout the program.

 When I got an opportunity to participate in this year's program, which took place from
July 5 to August 27, I was extremely excited and grateful. I was assigned as a part of the
PdmV team to develop a new version of one of their software called ValDB.

 ValDB is a website for tracking software packages that are deployed on the CMS
system to ensure the correctness and quality of the software. However, the previous version
has a problem with the overall user experience, which makes users frustrated when using this
tool. So, my main objective is to implement the new version of this software that enhances
the previous version’s features as well as introduce new essential features.

 With my knowledge and experience of software engineering, I am confident in the
completeness of this project. Together with modern software development technologies such
as Python, TypeScript, and React, which I am very familiar with, it guarantees that this
software is robust, and the codebase is highly maintainable.

 Nevertheless, CI/CD eases the development and deployment process of this project. It
provides an automation pipeline which reduces repetitive manual processes. It also
consistently ensures software quality. This is the main key that accelerates the software
delivery process to users and reduces complexity for developers.

2

Chapter 2
Experiences

 Having this summer student program is one of the best opportunities and an
impressive experience for me. It gave me a chance to work with one of the largest scientific
research organizations in the world. Working with amazing people internationally such as my
supervisors is a golden opportunity and experience that cannot easily be found elsewhere.

 Throughout my program, I got so many valuable suggestions and insightful comments
from my supervisors and my team members, which made me improve my technical skills.
Working with an international organization helps me improve my soft skills as well. It opens
my perspective, and it makes me learn about other cultures as well.

 Because my assigned project is a small-scale project, I got an opportunity to explore
and experiment with many interesting ideas, including different implementation approaches,
interesting external software libraries, and implementing my own core libraries. So, I did not
have to worry about trying new things. I think this is one of the best experiences I have had
because it makes me think outside the box, and reminds me not to get stuck with the same
kind of ideas.

 Although this is my first virtual internship that I have not had before, I think the
program was perfectly executed and very impressive. Their virtual activities and lecture
sessions are flawlessly organized. Lastly, I highly recommend this program to everyone who
wants to take a chance to become a part of CERN that may change our future.

3

Chapter 3
Technical Report

3.1 Abstract

 ValDB is a validation database website. The previous version has a problem with the
overall user experience. By developing a new version of ValDB, it can help improve user
experience and introduce essential features to the system. Together with modern web
development technologies such as Python, Flask, TypeScript and React, they ease the
development process and make the codebase easily maintainable. A custom ORM takes
advantage of native type hinting introduced in Python with simple syntax. CI/CD helps
automate processes, ensure system quality, and quickly deliver new software changes to
users.

3.2 Introduction

 I got an opportunity to be selected as a CERN Summer Student Programme 2021 for
8 weeks. During the program, I was assigned as a part of the PmdV team with my
supervisors: Justinas Rumsevicius and Chayanit Asawatangtrakuldee. My assignment was to
work on developing a new ValDB system.

 ValDB is a validation database website for tracking software packages’ quality that
are deployed on the CMS system. Currently, this system has some problems that affect the
user experience, including a complicated user interface, missing information in report
content, and a complicated user management system. The objectives of developing a new
version of ValDB are to improve the overall user experience and implement essential
features.

3.3 Acknowledgements

 I would like to express my special thanks to my supervisors: Justinas Rumsevicius
and Chayanit Asawatangtrakuldee, and the PdmV team members who gave me a golden
opportunity to do this project as well as gave me valuable comments and suggestions which
led to the completion of this project.

 Furthermore, I would like to thank everyone who organized and coordinated CERN
Summer Student Programme 2021. Although it was an online summer student program, it
was an amazing and memorable experience for me, and everything was perfectly organized.

4

3.4 Technologies

 Unlike the previous version of ValDB that used conventional technologies such as
plain HTML, which made it hard to develop advanced features and maintain, the new version
of ValDB uses modern technologies which are popular, powerful and maintainable.
Technologies applied in this system can be divided into three main components: backend,
frontend and database.

 The backend is implemented with Python together with Flask to serve the requests
from clients. The frontend is implemented with TypeScript and React. TypeScript is an
enhanced version of JavaScript which supports static typing, so the frontend codebase is easy
to maintain. For the database, MongoDB is used here. MongoDB is a document-based
NoSQL database that supports dynamic schemas. It is a powerful database that can handle
large amounts of various types of data.

3.5 Methodology

3.5.1 System Requirements

• Administrators can manage campaigns in the system.
• Administrators can manage users’ permission and role.
• Administrators and validators can view campaigns and reports.
• Validators can only write reports based on their permission group.
• Validators can see their assigned reports based on their permission group.
• Anyone can comment on reports.
• A report editor needs to support various types of information, including tables,

hyperlinks, and attachments.
• Emails need to be sent on certain events in the system, such as campaign or report

modification, users’ permission change, and new comments on reports.
• Data from the previous version needs to be migrated to the new version.

5

3.5.2 Use-case Diagram

Figure 1: Use-case Diagram

 Figure 1 shows the overall use-case of the new system. Users in the system can be
divided into two roles: administrators and validators. Administrators are responsible for
campaign and user management. They can create, edit and sign off campaigns and edit users’
role and permission. On the other side, validators are responsible for writing reports based on
their permission groups. They can add attachments to the reports. However, they can view
campaigns and reports from another group, but they do not have permission to modify them.
Any user can comment on any report in the system. Validators can also view their assigned
report which they can have quick access to write reports. Lastly, the system can automatically
send emails to users on certain events.

6

3.5.3 System Architecture

Figure 2: System Architecture

 Figure 2 shows the architecture of the system. Every request sent from the client's
browsers will be authenticated by the CERN SSO (single sign-on) Service before passing to
the backend of the system. The backend is the main component in the system that handles all
the logic. Data will be mapped into native Python objects using ORM (Object-relational
Mapping) so that the backend can manipulate data in the database using its objects with a
simple interface. ORM handles database operations via the database connector which
connects to the MongoDB database. For the frontend component, it is built into a static site
that can serve clients via a backend static API. For email service, it uses pre-configured
SMTP on their deployment virtual machine to send email to users.

3.5.4 Custom ORM

Figure 3: ORM Usage Example

7

 Because Python is a dynamic type programming language, dealing with data that does
not declare specific types or schemas can be frustrating and hard to maintain. However,
Python 3.9 introduces native generic type hinting. A custom ORM implemented in this
system aims to take advantage of native type hinting to makes the codebase more
maintainable but still keep the simple syntax style of Python.

 Figure 3 shows the example usage of custom ORM in the system. For data model
declaration, it supports native type annotation such as string, integer, floating point, boolean
and enumeration. It supports data relationships such as one-to-many and many-to-one
relationships. It provides a simple interface which resembles the native Python coding style
without strict schema or complex declarations. For example, on Figure 3.a, the user group
contains many users which can be declared by a list of user objects using native type hinting,
and the ORM will automatically create a data relationship. Moreover, it supports field
validation that validates each field by specified rules before committing a transaction in the
database. The ORM provides all essential database operation interfaces such as create,
update, query, and delete with simple usage.

3.5.5 CI/CD

 CI/CD (continuous integration and continuous delivery) helps developers integrate
their features and deliver them easily. Since Github is used to store the source code of this
project, Github Actions takes care of CI/CD operations in this project. The operations are
separated into two parts: pull requests and deployment pipelines.

 For the pull requests pipeline, the pipeline runs on every pull request. The main action
for this pipeline is linting, which includes pylint for Python and eslint and tslint for
TypeScript. Linting helps keep code clean and conform to coding style standard rules. Unit
tests are implemented in the project to check the correct functionality and behavior of the
system. However, at the current state, unit tests need to be run manually because the pipeline
is not configured to run them yet.

 For the deployment pipeline, this pipeline runs every day at midnight. It keeps track
of the main branch of the project’s codebase for any new modifications. If there are changes,
it runs these actions: build and release. For build action, it builds the frontend source into a
static site and removes the frontend source and unit test folders since they are not needed for
production. For release action, it makes an artifact file that can be executed on a production
virtual machine.

8

3.6 Result

Figure 4: All Campaign Page User Interface

Figure 5: Report Editor User Interface

9

Figure 6: Report Comment Section User Interface

Figure 7: User Permission Management Page User Interface

 All of the components are developed and deployed in a virtual machine. The
following figures: Figure 4, Figure 5, Figure 6 and Figure 7, show the examples of the new
system’s user interfaces.

 Figure 4 shows the campaign list page. Users can see the list of all campaigns, search
by keyword, and sort by columns. Administrators can create new campaigns by clicking on
the “Create” button.

10

 Figure 5 shows the new report editor. This editor supports the markdown format,
allowing users to add different types of content to the report, such as tables, hyperlinks,
checkboxes, and item lists. Attachments can be added by dropping the file into an editing area
or by clicking on the “Add Attachment” button.

 Figure 6 shows the comment section in the report page. When a new comment is
added to a report, an email will be automatically sent to authors and users commented before.
This feature solves the problem that users need to contact authors by emails frequently when
some information is missing, and they need to find authors’ email by themselves.

 Figure 7 shows the user permission management page. This page is used by
administrators to manage validators’ access rights. Administrators can add or remove each
person from certain groups in the system. Unlike the previous version of ValDB that requires
administrators to input both username and email when adding a new user, the new version
requires only email and the system will automatically get users’ full name from their account.

3.7 Conclusion

 The new version of ValDB improves the overall user experience from the previous
version. It also solves the problems of the previous version by introducing new essential
features. The overall user interface looks nicer and easier to understand. Modern technologies
applied to the system make it easy to develop and maintain. The custom ORM supports all
use-cases in the system. However, the ORM has a performance issue when querying a very
large amount of data compared to directly querying with a database. CI/CD helps speed up
deployment time, ensure the correctness of the system and reduce manual humen work.
Lastly, the data from the previous version is migrated to the new one, so that users can
continue using the new version and see historical data of the system.

	PREFACE
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	TABLE OF FIGURES
	Chapter 1 Introduction
	Chapter 2 Experiences
	Chapter 3 Technical Report

