

X-ray Fluorescence Analysis

David Paterson, Principal Scientist X-ray Fluorescence Microscopy and X-ray Absorption Spectroscopy

X-ray fluorescence analysis **Chiba University** Department of Chemistry **Outline of Lecture** Chiya NUMAKO Tokyo University of Science Department of Applied Chemistry Izumi NAKAI Interaction of X-rays with matter Introduction to X-ray • Principle of X-ray fluorescence analysis fluorescence (XRF) Applications and examples High brilliance: exceptional sensitivity Synchrotron radiation • Parallel beam, low divergence: microprobe => microscopy and XRF analysis • Energy tunability: elemental selectivity, XAS and microspectroscopy X-ray fluorescence • Detector advances: Maia detector & event mode acquisition microscopy (XFM) and Megapixel imaging, what does it enable? • 3D techniques, tomography, XANES imaging, examples **3D** techniques **Conclusions and** Summary: pros and cons of XRF future directions Future directions: e.g. 3D XANES imaging X-ray fluorescence analysis Tokyo University of Science Suppo Department of Applied Chemistry Australian Izumi NAKAI

Interaction of X-rays with matter

What is light?

2 models

• Particle (photon)

• A method for determining elemental composition

• Electrons are excited to a higher energy state

• Unstable at higher energies so electrons will decay to the lowest energy state

• Emission of light is the result

Australian Government

X-ray fluorescence

Principles of XRF analysis

Energy

- Qualitative
- Elemental determination
- Chemical information
- Spectroscopy

Intensity

- Counts or peak height
- Proportional to concentration
- Relative
- Quantitative
- Calibration is relatively straightforward

Detection of XRF, EDS and WDS

How to measure E and I. Two methods of XRF analysis (a) Energy dispersive spectroscopy (b) Wavelength dispersive spectroscopy

Supported by Victoria Australian Government

Outline of Lecture

Australian Governmen

X-ray focussing optics

- Introduction:
 - The promise of x-ray optics diffraction limited focussing $\sim \lambda$
- Diffractive optics:
 - Bragg diffraction
 - Diffraction gratings
 - Example: Fresnel zone plate
- Refractive
 - Example: compound refractive lens
- Reflective
 - Example: Kirk Patrick-Baez (KB) mirrors
- Combination optics
 - Multilayer coatings

Diffractive optics

•Bragg diffraction

•Double crystal monochromator

•Exercise: how to achieve focussing using Bragg diffraction from a crystal

Grating diffraction

- Fresnel Zone plates:
- circular diffraction grating

$$Res = \frac{0.610\lambda}{NA} = 1.22 \,\Delta r$$

- Efficiency of zone plate is determined by the transmission grating efficiency
- See:
- <u>http://henke.lbl.gov/optical_constants/tgrat2.html</u>

Transmission Grating Efficiency

Au Density=19.32 Alpha=0.5 Thickness=1600.nm

Fig. 4-8. A Fresnel zone plate lens with plane wave illumination, showing only the convergent (+1st) order of diffraction. Sequential zones of radius r_n are specified such that the incremental path length to the focal point is nl/2. Alternate zones are opaque in the simple transmission zone plate. With a total number of zones, N, the zone plate lens is fully specified. Lens characteristics such as the focal length f, diameter D, and numerical aperture NA are described in terms of l, N, and Dr, the outer zone width. [Courtesy of Cambridge University Press, Ref. 3.]

Compound refractive lens

Combination optics - multilayer coatings

- Multilayers can be used as coatings for glancing incidence optics in the soft and hard x-ray region. Benefits are:
- larger angles of glancing incidence
 - improved collecting area over optics coated with a single metal layer
- energy selective effect
 - a reduction of the bandpass of the reflected radiation
- Multilayers are used to coat optical elements for instruments such as x-ray microprobes, spectrometers and monochromators at synchrotron beamlines.
- <u>http://henke.lbl.gov/multilayer/mltutor.html</u>

A legendary cold case •Phar Lap's hair was analysed for heavy metals **Outer Root Hair Bulb** Hair **Skin Level** Sheath Zinc **Arsenic**

High arsenic consistent with a large amount of arsenic ingested in the champion's last 30 hours of life

XFM – microprobe & nanoprobe DoF: ~150 µm - Spot on a specimen; size: 60 – 500 nm, - 'Step and dwell' or 'on-the-fly' scanning to build the image ٠ Overlay OSA Transmission sample detector zone plate fluorescence detector 5 μm scan stage sample24_2D.0001 sample24_20.0001 1/E 10 Counts per channel 10 10 Supported by 10 Energy (keV) 15 20 AUSTRALI Australian Government

Outline of Lecture

Introduction to X-ray fluorescence (XRF)	 Interaction of X-rays with matter Principle of X-ray fluorescence analysis Applications and examples
Synchrotron radiation and XRF analysis	 High brilliance: exceptional sensitivity Parallel beam, low divergence: microprobe => microscopy Energy tunability: elemental selectivity, XAS and microspectroscopy
X-ray fluorescence microscopy (XFM) and 3D techniques	 Detector advances: Maia detector & event mode acquisition Megapixel imaging 3D techniques
Conclusions and future directions	 Summary: pros and cons of XRF Future directions: e.g. 3D XANES imaging
Australian	Supported

by Australian Government AUSTRALIA

Spectroscopy example

Environmental science – cereal grains

Potassium Copper Calcium

Zinc Iron Manganese

> Australian Synchrotron

Enzo Lombi et al. Uni South Australia

Micronutrient distribution in barley grain

High definition detailed analysis of elemental correlations

Enzo Lombi, *et al.* Journal of Experimental Botany. **62**, 273–282 (2011) "Megapixel imaging of (micro)nutrients in mature barley grains."

Supported by Victoria Asstralian Government

Iron work to boost rice diets

Challenge: Despite being a major food source for billions of people in developing countries, polished or white rice does not have enough iron, zinc or provitamin A to meet daily nutritional requirements.

Approach: Iron-enriched rice is very difficult to develop with conventional breeding methods, so Australian researchers used gene technology to increase the amount of iron in the endosperm, the white part of the rice grain. The new rice variety has up to four times the iron and twice the zinc content of ordinary rice. The Australian Synchrotron showed where the iron and zinc were stored in the rice endosperm, down to sub-micron levels.

Benefit: The rice will now undergo field trials to ensure that the enriched levels of iron and zinc in the endosperm can be maintained in a field environment.

Collaborators:

Australian Centre for Functional Plant Genomics Universities of Melbourne, Adelaide and South Australia Australian Synchrotron

National Research Priorities: promoting and maintaining good health.

Top image: Alex Johnson (University of Melbourne and Enzo Lombi (University of South Australia)

Iron uptake to endosperm of rice grains

• Iron deficiency Most common nutritional deficiency disorder in the world.

Over 2 billion people (30% world's population) suffer

Australian Synchrotron Alex Johnson, *et al.* PloS ONE. **6**, e24476 (2011) "Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm."

Iron and zinc uptake to rice endosperm Α location of 1 scutellum 2 embryo 3 endosperm WildType OE-OsNAS2A 500 µm Fe C Zn Ø Mn G Cu Australian Synchrotron orted bу low high AUSTRALIA Australian Government

Outline of Lecture

Introduction to X-ray fluorescence (XRF)	 Interaction of X-rays with matter Principle of X-ray fluorescence analysis Applications and examples
Synchrotron radiation and XRF analysis	 Highly Brilliant X-ray Source: high sensitivity Parallel beam with small divergence: microprobe Energy tunability: elemental selectivity and XAS and spectroscopy
X-ray fluorescence microscopy (XFM) and 3D techniques	 Detector advances: Maia detector & event mode acquisition Megapixel imaging 3D techniques
Conclusions and future directions	 Summary: pros and cons of XRF Future directions: e.g. 3D XANES imaging
	Successful

Maia detector array and imaging system

XFM beamline, Australian Synchrotron

- Capture spatial detail in complex natural samples from ~2 μm to >50 mm scales
 → images ~100 M pixels or more
- Pixel transit times down to 50 μs
 → count rates to 10 M/s typical (40 M/s peak)
- Real-time spectral deconvolution
 - ightarrow real-time display of element images

Maia detector

384 detector array
 annular backscatter
 1.2 sr solid-angle
 Event mode
 Real-time processing

Full Spectral Data Collection: Raster sample through beam

Raster sample in X,Y through microbeam

Conventional synchrotron approach:

Read-out **N** full spectra at each pixel (~1 sec)

- 150 x 150 pixels \rightarrow ~6-7 hours
- 15 minutes \rightarrow ~30 x 30 pixels

Detector array: **N** detectors

Full Spectral Data Collection: Event-by-event processing

Nuclear Physics Approach:

Sample X,Y for each detected X-ray event

- Freedom to use high scan rates
- Real-time processing of event stream

List-mode data stream:

Used for Nuclear Microprobe and now SXRF at Australian Synchrotron XFM

 $X_{1}, Y_{1}, E_{1}, n_{1}$ $X_{2}, Y_{2}, E_{2}, n_{2}$ $X_{3}, Y_{3}, E_{3}, n_{3}$ X_{4} , Y_{4} , E_{4} , n_{4} $X_{5}, Y_{5}, E_{5}, n_{5}$ X_6, Y_6, E_6, n_6 $X_{7}, Y_{7}, E_{7}, n_{7}$

- X_i X coordinate
- *Y_i* Y coordinate
- *E_i* Energy
- Detector # n,

Australian Synchrotron

Supported

bv

Outline of Lecture

Introduction to X-ray fluorescence (XRF)	 Interaction of X-rays with matter Principle of X-ray fluorescence analysis Applications and examples
Synchrotron radiation and XRF analysis	 Highly Brilliant X-ray Source: high sensitivity Parallel beam with small divergence: microprobe Energy tunability: elemental selectivity and XAS and spectroscopy
X-ray fluorescence microscopy (XFM) and 3D techniques	 Detector advances: Maia detector & event mode acquisition Megapixel imaging 3D techniques
Conclusions and	 Summary Pros and cons of XRF

Se bio-fortification in broccoli

 Marian McKenzie NZ Institute for plant and food, Plant, Cell & Environment

Mn

Pb bioavailability

193

Euan Smith and Enzo Lombi, CRC CARE, U. South Australia

E. Smith: In Vivo assessments of Pb bioavailability in contamina using pregnant and non-pregnant mice

Sampling studies: wheat grain sections

Fluorescence tomography

3D example: Arsenic, germanium and selenium speciation and localization in rice grain

Meharg, de Jonge, et al, Analytical and Bioanalytical Chemistry 2000 projections, 2 micron pixel, recon. resolution = 5 microns.

Red = Germanium, Green = Zinc, White = Compton scatter

Investigating silicic acid pathways for arsentie

Data processing: PyMca, Maps, GeoPIXE, ...

РуМса

<u>http://pymca.sourceforge.net/</u>

MAPS

• <u>http://stefan.vogt.net/downloads.html/</u>

GeoPIXE

- <u>http://www.nmp.csiro.au/GeoPIXE.html</u>
- Full spectrum fitting at each pixel, data point

XFM beamline

Maia 384 at the Australian Synchrotron

Maia image of Allende meteorite

Image area: 18.5 x 6.5 mm, 30M pixels Acquisition time: 3.5 hours, 0.49 ms/pixel Detector: Maia 384 annular array, 3 M counts/s Beam: 18.5 keV, $\phi = 2 \mu m$

1 mm

1 mm

Spectromicroscopy

Claire Weekley *et al. Metabolism of selenite in human lung cancer cells: X-ray absorption and fluorescence studies*, Journal of American Chemical Society, **133**, 18272-18279 (2011).

Figure 7. Se K-edge μ -XANES spectra of Se hotspots in an A549 cell treated with 5 μ m selenite. The experimental spectra (a and b, black) are overlaid with the spectra of elemental Se (red) and GSSeSG (blue). The optical micrograph (top left) and scattered X-ray (XS) and elemental distribution maps of S and Se of the cell are shown with arrows indicating the locations from which spectra (a) and (b) were collected.

Outline of Lecture

Introduction to X-ray fluorescence (XRF)	 Interaction of X-rays with matter Principle of X-ray fluorescence analysis Applications and examples
Synchrotron radiation and XRF analysis	 Highly Brilliant X-ray Source: high sensitivity Parallel beam with small divergence: microprobe Energy tunability: elemental selectivity and XAS and spectroscopy
X-ray fluorescence microscopy (XFM) and 3D techniques	 Detector advances: Maia detector & event mode acquisition Megapixel imaging 3D techniques
Conclusions and future directions	• Summary: pros and cons of XRF • Future directions: e.g. 3D XANES imaging
	Supported

Summary: pros and cons of XRF

Pros and advantages

- Non-destructive multi-elemental analysis in parallel (EDS)
- Two dimensional mapping and 3D
- Easy to carry out the analysis and interpret the results
- Optical system for EDS analysis is straightforward
- Infinite field of view, any sample size, from sub-cellular to paintings.
- *in situ, in vivo*, in air, specialized sample environments: temperature, pressure, ...
- Concentration major (%), minor, and trace (ppm) many elements in complex matrix
- Combine with other techniques for more power. E.g. X-ray diffraction and XAFS

Cons and limitations

- Microprobe analysis: sample thickness ~ beam size, prep of thin sections can be difficult
- Relatively slow and time consuming: proportional to number of pixels
- Low excitation efficiency for light elements
- Detailed calibration is required to high precision quantitative analysis
- Sample damage, radiation damage can be an issue & should be considered
- Photo-reduction/oxidation of the component elements.
- Lines can overlap difficult to deconvolute

Future directions

- Detector advances continue
- Event mode data acquisition becomes routine
- Full spectrum measured at a pixel
- 3D techniques
 - Tomography
 - XANES imaging (chemical state imaging)
- 4D techniques
 - 3D chemical state imaging, XANES tomography
 - Time based 3D studies

Acknowledgements XFM

- Martin de Jonge, Daryl Howard, Simon James, Kathryn Spiers
- •
- Jonathan McKinlay, Wayne Lewis, Andy Starritt, Mark Bennett, Mick Kusel, Emmanuel Vettoor, ...
- Jörg Maser, Stefan Vogt, Ian McNulty, and Barry Lai
- Peter Eng, Mark Rivers, Tony Lanzirotti
- Jon Kelly, Paul Murray and the IDT team
- Chris Ryan, Robin Kirkham, Gareth Moorhead, Murray Jensen,
- •
- Pete Siddons

APS U Chicago IDT

CSIRO

NSLS

XFM

Maia detector team

NSLS/BNL

- Pete Siddons
- Tony Kuczewski
- Arthur Zhi Yong Li
- Gianluigi De Geronimo
- Don Pinelli
- Angelo Dragone
- Paul O'Connor

Australian Synchrotron

- David Paterson
- Martin de Jonge
- Daryl Howard
- Simon James
- Kathryn Spiers

CSIRO MSE

- Robin Kirkham
- Paul Dunn
- Gareth Moorhead
- Murray Jensen
- Peter Davey
- Roshan Dodanwela

CSIRO ESRE

- Chris Ryan
- Stacey Borg
- Rob Hough
- James Cleverley
- Jamie Laird

Users (example data)****

- Barbara Etschmann
- Jöel Brugger
- Enzo Lombi
- Erica Donner
- Peter Kopittke
- Euan Smith
- Babasola Ajiboye
- Mike McLaughlin
- Hugh Harris
- Mel Lintern
- Steve Barnes
- Belinda Godel
- Aaron Stewart
- Richard Banati
- Andy Tomkins
- Damian Myers

Supported by

BEAMLINE 9 Microspectroscopy

Australian Government AUSTRALIA