Academic Seminar

Khon Kaen University

25 July 2018

X-ray imaging and X-ray Tomography Microscopy (XTM)

for Physical Science Applications

P. Pakawanit and C. Rojviriya*

*Beamline manager SLRI, Thailand

- 1. Catleya Rojviriya catleya@slri.or.th (Cat)
- 2. Phakkhananan Pakawanit phakkhananan@slri.or.th (Own)
- 3. Chalermluck Phoovasawat chalermluck@slri.or.th (Whan)

Principle of XTM

X-ray Tomographic Microscopy

Experimental station

BL1.2: Control cabin - Computer station

- Experiment control & setup
- Data acquisition system
- Sample preparation
- Data processing & backup

Experimental hutch of XTM Beamline

PCO.Edge (sCMOS chip)	Magnification		
(2560 X 2160 pixels)	x2	x5	x10
orizontal Objective field (mm)	9.24	2.47	1.85
ertical Objective field (mm)	7.80	2.08	1.56
Pixel size (µm)	3.61	0.96	0.72
± Depth of focus (µm) (Optic + Camera)	146	8.5	4.8
Max. Resolution (µm)	5	3	1.5
	(2560 X 2160 pixels) orizontal Objective field (mm) ertical Objective field (mm) Pixel size (µm) ± Depth of focus (µm) (Optic + Camera)	(2560 X 2160 pixels) x2 prizontal Objective field (mm) 9.24 ertical Objective field (mm) 7.80 Pixel size (µm) 3.61 ± Depth of focus (µm) (Optic + Camera) 146	(2560 X 2160 pixels) x2 x5 prizontal Objective field (mm) 9.24 2.47 ertical Objective field (mm) 7.80 2.08 Pixel size (µm) 3.61 0.96 ± Depth of focus (µm) 146 8.5 (Optic + Camera)

Experimental setup & Sample preparation

Experimental setup & Sample preparation

0 degree

90 degrees

180 degrees

X-ray imaging

: Distributions and pores

BaTiO₃/polydimethylsiloxane

: Crack

: Corrosion propagation

Advantages and limitations

- 3D visualization
- Pores, cracks and corrosion
- Phase distribution
- Non-destructive technique

- Size of sample
- Biology sample
- Dense sample

The 1st AWXTM2018 workshop organized by SLRI aims to introduce and promote the synchrotron-radiation application of X-ray tomography. The three-day program includes lectures on basics of synchrotron-radiation X-ray tomography, and tutorial sessions covering all operations from collecting data, reconstructing, visualizing, and analysis of CT data. Plus, the participants will have an opportunity to visit a new facility - XTM beamline at the Synchrotron Light Research

AWXTM2018 workshop is addressed to graduate students and scientists from ASEAN countries with an interest in applying X-ray tomography in their research. This will offer a fruitful opportunity for researchers to establish collaborations and to share their experiences with the experts in the field.

- 1,000 THB for Lecturer/Researcher
- 500 THB for Graduate student (Number of participants is limited to 30)

10 grants available for Thai and ASEAN participants

Online registration http://www.slri.or.th/AWXTM2018

User Office Section

Synchrotron Light Research Institute (Public Organization) P.O. Box 93, Nakhon Ratchasima 30000, THAILAND Tel.: 66 44 217 040 ext 1602 and 1605, Fax: 66 44 217 047 Email: useroffice@slri.or.th

- Basics of X-ray tomography: Clinical CAT scan vs Research CT
- Synchrotron tomography: Medical & Micro-CT beamlines
- CT data collection: mounting & moving sample
- CT reconstruction and artefact management CT data analysis: Calculation of void/porosity in volume
- 3D render and how to present CT data
- Software tutorials:

Octopus software: CT reconstruction, visualization, and analysis. ImageJ: basic visualization Drishti software: 3D render, movie and animation

Applications of X-ray tomography

Submission deadline: 15 July 2018 Announcement for Acceptance: 20 July 2018

Thank you for your attention

