Synchrotron Radiation Application Roadshow

คลินิกวิจัยสัญจร 2018

25 ก.ค. 2561 มหาวิทยาลัยขอนแกน

Synchrotron Radiation Microtomography For Life science reseach

ดร.แคทลียา โรจน์วิริยะ

catleya@slri.or.th

Beamline manager for XTM beamline

SLRI, Thailand

Computed Tomography (CT)

The 3D Visualization of internal matter without cutting open.

X-ray Radiography >>> 3D CT scan

- Internal structure details
- Non-destructive method
- Only 2D representation

- Internal structure details
- Non-destructive method
- 3D representation
- Segmentation

Differential Absorption

Lambert Beer's law

$$I = I_0 e^{-\mu\rho t}$$

 I_{θ} = initial intensity,

I = final intensity, $\mu = \text{mass absorption coefficient (cm²/g)}$ $\rho = \text{density (g/cm³)}$

t = thickness (cm)

Clinical CT scan "CAT scan"

Anatomy of a CT scan

CT scanners give doctors a 3-D view of the body. The images are exquisitely detailed but require a dose of radiation that can be 100 times that of a standard X-ray.

Research CT - "Micro-CT"

Reconstructed image (CT slice)

Stacking CT slices

Landis, E.N. and Keane, D.T. (2010) Materials Characterization 61 1305 - 1316.

Research CT scan "Micro-CT scan"

Why do you need synchrotron?

BL1.2W: X-ray Imaging & X-ray Tomographic Microscopy (BL1.2: XTM)

-			
PCO.Edge (sCMOS chip)	Magnification		
(2560 X 2160 pixels)	x2	x5	x10
Horizontal Objective field (mm)	9.24	2.47	1.85
Vertical Objective field (mm)	7.80	2.08	1.56
Pixel size (µm)	3.61	0.96	0.72
± Depth of focus (µm) (Optic + Camera)	146	8.5	4.8
Max. Resolution (µm)	5	3	1.5

APPLICATIONS of Micro-CT

- 3D visualization
- Phase distribution

Microstructure of living organisms and microfossils

Bag worm

Star sand

SYNCHROTRON THAILAND CENTRAL LAB

Marine fungal fruiting body submerges in decaying wood

Microfossils (<500 um)

SYNCHROTRON THAILAND CENTRAL LAB

Analysis of Porosity in Bone (Osteoporosis)

http://image-iq.com/osseointegration-of-resorbable-acl-screws

Metformin and MAPK inhibitor reduced bone porosity in lean type II diabetic rats

Assist. Prof. Sarawut Kumphune. (manuscript in preparation)

Figure 1 3D render of synchrotron radiation microtomography data of tibia trabecular bone.

Custom-made composite scaffolds for segmental defect repair in long bones

Reichert JC, et. al. (2011) Int Orthop. Aug;35(8):1229-36

3D reconstructions of a PDLLA-TCP-PCL (a) and mPCL-TCP scaffold (b)

Phase distribution in Cement

Landis, E.N. and Keane, D.T. (2010) Materials Characterization 61 1305 – 1316.

Segmentation of solid phases

- a. 3D render in grayscale volume
- b. Aggregates
- c. Cement hydrates
- d. Unhydrated particles

Biochar amended soil

Biochar amended soil

Dr. Ramida Rattanakam

Direct and micro-scale influence of biochar on soil properties

greater microbial activities

Experimental hutch of XTM Beamline

Experimental setup & Sample preparation

Preferable sample size

High z, diameter < 0.2 cm

Low z, diameter < 1 cm

BL1.2W: X-ray Imaging & X-ray Tomographic Microscopy (BL1.2: XTM)

Specification:

Source	Multi-pole wiggler, 2.2 T
Radiation type	Polychromatic beam
Energy range	5–20 keV
Imaging efficiency	100 frames/s
Beam size	10 X 4 mm (H x V)
Spatial resolution	1.5 μm (pixel size 0.72 μm)
Projection	Optique Peter WB microscope 2X, 5X,10X
Data acquisition/	LABView-based
Analysis	:XIMaq, XIMove, Octopus
Detector	YAG-Ce scintillation sCMOS camera (PCO.edge 5.5)

Techical consultant:

- 1. Catleya Rojviriya catleya@slri.or.th
- 2. Pakkananan Pakawanit
- 3. Chalermluck Phusawat

SYNCHROTRON THAILAND CENTRAL LAB

Thank you for your attention