No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
1		Dr. Prae Chirawatkul
	techniques	Dr. Supagorn Rugmai
	Scope:	Dr. Wantana Klysubun
	The outcome of this project is a successful implementation of a	Dr. Chatree Saiyasombat
	synchrotron-based measurement technique that is prominent and new to	Dr. Yingyot Poo-arporn
	the SLRI. The research involves development of relevant mechanical	Dr. Narong Chanlek
	design, electronic and control systems, and the design of the experiments	Dr. Pinit Kidkhunthod
	to demonstrate its capability. Scope of the project could range from an	Dr. Siriwat Soontaranon
	implementation of a new data collection algorithm, development of an	Dr. Suttipong
	operando/in-situ system for existing measurement techniques at the SLRI,	Wannapaiboon
	development of coupling lab-based characterization tools to the	Dr. Chomphunuch
	synchrotron beamlines, to an implementation of a new characterization	Songsiriritthigul
	technique. Beam time at the SLRI beamlines such as x-ray absorption	Dr. Sirinart Srichan
	spectroscopy, x-ray imaging and x-ray scattering beamlines will be allocated	Dr. Supinya Nijpanich
	to the project for the required experiments. The Ph.D candidates will be	
	working alongside the SLRI beamline scientists for their projects as well as	
	various works at the beamline. Upon completion of this project, the	
	candidate will have good understanding of relevant synchrotron techniques	
	and beamline instrumentation and able to work independently in research	
	projects and beamline development projects.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
2	Development of AI for atomic and molecular structural analyses with X-Ray Diffraction and X-ray Scattering	Dr. Supagorn Rugmai Dr. Chatree Saiyasombat
	Development of AI for atomic and molecular structural analyses with	Dr. Supagorn Rugmai

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
3	Development of X-ray lenses for nano-beam	Dr. Pattanaphong
	Scope:	Janphuang
	For a few decades, most of the advancements in materials science	Dr. Chanan Euaruksakul
	have relied a lot on material characterizations in nanoscale. Among the	and SLRI researchers
	engineering developments which aim to improve the spatial resolution of	
	scientific tools to nanometer-scale, those at synchrotron facilities have	
	succeeded in producing X-ray beam with the size down to less than 10	
	nanometers, allowing several modern synchrotron techniques to	
	investigate inhomogeneity of materials leading to novel information that	
	benefit research from many different fields. Fresnel's zone plates, which is	
	the diffractive X-ray focusing elements, are probably the most common	
	choice in focusing soft X-ray and medium-energy X-ray. Compared to the	
	others, zone plate setups are compact and can thus be integrated to most	
	end-stations at existing beamlines and also for the future beamlines	
	operating at the new 3 GeV SPS-II Synchrotron which is planned to be built	
	in the near future.	
	This project is of interest for Ph.D. students/candidates who would like	
	to work on the micro and nanofabrication techniques. We are looking for a	
	motivated student, with clean room basic knowledge; the student will be	
	involved in the design and fabrication of Fresnel's zone plates on a silicon	
	wafer, as well as choice of materials to be patterned, collaborating with	
	SLRI beamline scientist and the experts from other modern synchrotron	
	facilities. Based on the results, the students will be able to participate in	
	the optimization of the Fresnel's zone plates to be applied in the new 3	
	GeV SPS-II Synchrotron beamlines.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
4	Studies of collective bunch instabilities in electron storage rings	Dr. Somjai Chunjarean
	Scope:	Dr. Thanapong Phimsen
	Collective effects are caused by the interactions between charged	and SLRI researchers
	particles (electrons) and their surroundings. However, electrons can also	
	interact with themselves leading to space charge effects and with their	
	surrounding creating electromagnetic fields called wake fields. The wake	
	field can be a cause of a longitudinal and transverse instabilities resulting	
	in an ultimate electron beam current. It became more significant limitations	
	to the achievable a high beam current at low beam emittance. To enhance	
	the stored electron beams and improve a machine performance, studies	
	on coupled-bunch instabilities and their effect on synchrotron light source	
	operation and performance both with uniform filling pattern and non-	
	uniform filling pattern are required. In the longitudinal case, coupled-bunch	
	instabilities driven by the Higher Order Modes (HOMs) of the RF-cavity will	
	be investigated, while in the transverse case numerical simulations with a	
	particle tracking code for self-consistent simulations of collective effects	
	driven by short and long-range wake fields will be complemented.	
	This project will focus on all these bunch stabilities and aim to	
	enhance the brightness of synchrotron light. We are looking for students	
	who have good motivation to learn in multi-particle beam dynamics,	
	simulations with some codes.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
5		Dr. Thanapong Phimsen
	ring	and SLRI researchers
	Scope:	
	In synchrotron light source, the beam lifetime is one of the important	
	beam parameters. In low-emittance storage ring of the third-generation light	
	sources, the beam lifetime is usually dominated by Touschek scattering. In	
	this study, the beam dynamics of the harmonic cavity will be investigated.	
	The parameters of both active and passive operation will be optimized to	
	cancel the slope of RF voltage and lengthen the bunch. The requirement	
	and bunch lengthening effect of harmonic cavity will be estimated using	
	analytical model with active mode operation. In passive operation, the	
	harmonic voltage is generated from the beam itself. The Touschek lifetime	
	increases are estimated for optimum and non-optimum voltage flattening.	
	A tolerance of the operation will be studied in case that there is an	
	imperfection on harmonic voltage via shunt impedance or beam current,	
	and also a shift on detuning angle. Transient beam loading effect generated	
	by the non-uniform filling pattern causes a variation of harmonic phase and	
	reduces the lengthening effect as well as bunch lengthening effect crucially.	
	The transient loading effects have been investigated using developed	
	tracking code for uniform filling cases and a non-uniform filling cases. An	
	increase of synchrotron frequency spread due to nonlinearity of the voltage	
	giving to the bunch will be studied by using tracking simulation. The effect	
	caused by reduction of harmonic voltage generated by lengthened bunch	
	distribution is also estimated by applying iteration method to both	
	analytical model and tracking code simulation.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
6	Studies of low-emittance beam injection efficiency of 4 th generation	Dr. Thakonwat
	synchrotron light source	Chanwattana
	Scope:	Dr. Siriwan Jummunt
	Modern synchrotron light sources have been designed in order to	and SLRI researchers
	achieve low electron beam emittance resulting in high photon beam	
	brightness particularly at X-ray wavelengths. 4 th generation synchrotron	
	light sources focus on design of storage rings based on multi-bend	
	achromat (MBA) lattices which enables a reduction of electron a few orders	
	of magnitude compared to 3^{rd} generation synchrotron light sources.	
	Electron beam motion in a storage ring is affected by dynamic effects	
	leading to large amplitude oscillations. Dynamic aperture, which is the	
	border accommodating electron beam stable orbits in a storage ring, is	
	significant for determining electron beam injection efficiency and lifetime	
	of stored electron beam. A challenge in the design of MBA storage rings is	
	to achieve lower beam emittance with sufficient dynamic aperture. Beam	
	injection into a low-emittance storage ring with low dynamic aperture has	
	been extensively studied based on different beam injection schemes and	
	techniques aiming to achieve high injection efficiency. This research covers	
	both theoretical analysis and numerical simulations for the studies of beam	
	injection. There are many codes for particle accelerator simulations	
	available for beam injection simulations. Skills related to programing,	
	numerical simulations, and particle beam dynamics should be built and	
	developed in this study.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
7		Dr. Chanan Euaruksakul
7	Scope: Photon detectors are one of the most common parts in many scientific	Dr. Chanan Euaruksakul Dr. Pattanaphong Janphuang and SLRI researchers

8 [Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
		Dr. Prapaiwan Sunwong
k k r r i z r	Development of pulse magnets for high energy electron synchrotron	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
9	Development of ultra-high stability power supply	Dr. Roengrut
	Scope:	Rujanakraikarn
	Operation of particle accelerators in synchrotron radiation machines	and SLRI experienced
	needs extremely precise power supplies (PS). Stringent demands must be	staffs
	fulfilled for design consideration such as stability, efficiency, accuracy, and	
	electromagnetic compatibility. Specifically, for the magnet power supplies	
	controlling the electron beam to attain desired characteristics with high	
	stability, electrical specifications, and functional modes necessary to set up	
	the high-performance power supplies must be addressed. In addition, to	
	achieve ultra-high stability of the modern power supplies, both analog and	
	digital control design and algorithm implementation are extremely	
	mandatory with highly flexible control structures and monitoring capability.	
	The PhD candidates will be working alongside the SLRI experienced	
	engineers and researchers for their projects by designing and developing	
	such a power supply for accelerator applications. Necessary simulation and	
	real-world implementation (both hardware and software designs) are	
	performed for practical purposes during their study.	
	Tools to be used: High-performance computer, simulation software,	
	embedded controller boards (FPGA/microcontrollers), data acquisition	
	modules.	
	Skill required: Programming/coding skill. Knowledge of electronic and	
	electrical engineering/power electronics/digital signal processing/control	
	system engineering is preferable.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
10	Advanced control system with unified classical, modern, and AI-	Dr. Roengrut
	based approaches	Rujanakraikarn
	Scope:	and SLRI researchers
	Particle accelerators are machines used for increasing the energy of	
	charged particles for use in various applications in many fields. The	
	operation of these machines generally requires the monitoring and control	
	of many system parameters. This is achieved with the distributed control	
	system comprising different interconnected hardware and software control	
	system layers covering different subsystems of accelerators like injector,	
	transport lines, storage ring, and beam lines. The main requirement is that	
	all the sub-system operations are to be performed in a synchronized and/or	
	sequential manner. Classical and modern multivariable control algorithms	
	have been constantly implemented in the closed-loop control schemes to	
	control the machines. With the time-and-frequency domain designs and	
	trade-off between disturbance rejection and noise attenuation, these	
	control algorithms have been successfully applied to the machines.	
	Nowadays, machine stability and timing in modern accelerators have	
	become increasingly stringent, the signal processing and control algorithms	
	must meet these demanding requirements. With the advancement of the	
	computing hardware and modern software architecture, it is possible and	
	challenging to apply complex Artificial Intelligence algorithms together with	
	the control and signal processing algorithms to the closed-loop control of	
	the machines. The PhD candidates will be working by designing an AI-based	
	controller together with the new and/or existing feedback control	
	algorithms for subsystem(s) of the accelerator machine. Both simulation	
	and real-world implementation (hardware and software designs) are	
	performed for practical purposes during their study.	
	Tools to be used: High-performance computer, FPGA controller boards,	
	microcontrollers, single-board computers.	
	Skill required: Programming/coding skill. Knowledge of signals and	
	systems/control system engineering/machine learning is preferable.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
11		Dr. Somjai Chunjarean
	Scope:	and SLRI researchers
	The RF systems of the Siam photon source is supplied by the high-	
	power RF amplifier. The present RF amplifier is based on the solid-stage	
	device technology. Amplifier was procured from international company.	
	There are several spare parts, RF boards and modules required to be spared	
	at SLRI to maintain the reliability of this RF amplifier. To be able of design	
	and fabricate this high-power RF amplifier will benefit the cost of maintenance and operation. Aiming of this project is to design and fabricate	
	RF amplifier boards, then combining a low-power RF board into the high-	
	power RF amplifier. This includes the design of RF components, such as RF	
	splitter, RF combiner, RF circulator. RF testing and measurements will be	
	also performed to ensure the efficiency and reliability of the whole RF	
	amplifier. Control system of this RF amplifier is foreseen to be included in	
	the project. Testing of the developed system can be done with the \ensuremath{RF}	
	system testing station at SLRI.	
	Tools to be used: the RF circuit design tools, RF components design tools	
	(CST Studio Suite). RF measuring tools are also available at SLRI.	
	Skill to be built: Candidate will gain skill and knowledge of the RF circuit	
	design and microwave engineering. Programing and controlling skills will	
	also gain during the process of building the control of the amplifier system.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
12	Development of Low Level Radio Frequency system	Dr. Somjai Chunjarean
	Scope:	and SLRI researchers
	The RF systems of the Siam photon source is controlled by the Low-	
	Level Radio Frequency (LLRF) control system. The present LLRF is based	
	on the FPGA. This is a turnkey product from company. To be able of	
	programing and diagnose the whole RF system, the project of self-	
	developed LLRF based on FPGA is established. This will design the system	
	based on the present and future FPGA platform. Aiming is to build the LLRF from the FPGA products in the market, programing using our owned	
	developed algorithm. This included data acquisition both ADC and DAC of	
	the RF signals, the digital RF signal processing. Testing of the developed	
	system can be done with the RF system testing station at SLRI.	
	Tools to be used: the FPGA programing in which come together with the	
	FPGA module. FPGA boards and modules will be procured for the project.	
	Skill to be built: Candidate will gain skill and knowledge of the FPGA	
	programing/coding, FPGA structures and circuit design. Controlled algorithm	
	and application to real systems will be acquired during the process of	
	building the system.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
13	Autonomous control for Radio Frequency control system	Dr. Roengrut
	Scope: Radio frequency (RF) is one of the systems in a synchrotron radiation facility of the Siam Photon Source (SPS). This dynamical system is highly complex due to its high-dimensional parameter space and dynamic nature. Instability of the RF system can easily affect the operation of the machine if improper control algorithm is not carefully designed and implemented. In addition, to achieve desired controlled behavior of the machine, accelerator parameters tuning for optimal performance can be challenging. These characteristics makes it potentially suited for a reinforcement learning (RL) approach that learns to make sequences of optimal decisions under parameter uncertainty in this dynamical system. Recent developments in RL have shown promising result in control system applications. The PhD candidates will be working by designing an Al-based agent using Deep RL approach (RL coupled with deep neural networks for continuous state and action-space representation) that can teach itself how to learn optimal control policies and implementing controller for the RF system. The goal of the controller implementation is to reduce the machine tuning time without any input or supervision from a human and ultimately achieve a near-autonomous control scheme.	Rujanakraikarn and SLRI researchers
	Tools to be used : High-performance computer, FPGA controller boards, microcontrollers, single-board computers (for direct implementation of the control, signal processing, and machine learning algorithms).	
	Skill required : Programming/coding skill. Knowledge of control system engineering/machine learning is preferable.	

Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
Design and fabrication of Radio Frequency harmonic cavity for	Dr. Somjai Chunjarean
electron storage ring	and SLRI researchers
Scope:	
Synchrotron Light Research Institute (SLRI) operate Siam photon source,	
which has storage ring to store electron beam for generating synchrotron	
radiation. There are instabilities affect electron stored in the ring. Using	
harmonic cavity in storage ring would benefit of curing or reducing these	
measuring tools is ready at SLRI.	
Skill to be built: Candidate will gain skill and knowledge of the RF structure	
design and microwave engineering. Knowledge about electromagnetic	
simulation using commercial and/or open access codes, Python and Matlab	
5 1	
acquired.	
	 electron storage ring Scope: Synchrotron Light Research Institute (SLRI) operate Siam photon source, which has storage ring to store electron beam for generating synchrotron radiation. There are instabilities affect electron stored in the ring. Using harmonic cavity in storage ring would benefit of curing or reducing these instabilities. Project aims of studying effects of using harmonic cavity to an instabilities of electron beam in storage ring. Physics design of the cavity including the engineering design. Fabrication of the cavity is included in scope of the project. RF properties measurements will be performed together with the RF conditioning of this cavity. Installation and testing inside storage ring is foreseen to include in the project. Tools to be used: the Super Fish code and CST Studio Suite for RF design, Engineering study and design will be done with SolidWorks. RF measuring tools is ready at SLRI. Skill to be built: Candidate will gain skill and knowledge of the RF structure design and microwave engineering. Knowledge about electromagnetic

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
15	Development of RF-shield bellow for low impedance electron storage ring	Dr. Thanapong Phimsen Dr. Somjai Chunjarean
	ring Scope: For new generation synchrotron light source, an instability caused by Wakefield generated from vacuum components must be concerned. Bellow has been used to accommodate long thermal expansions of the beam pipes and be one of the Wakefield sources. In this project, the bellow with RF shield which contain a high frequency shield structure inside will be designed. The impedance from the designed bellow will be investigated to optimize the design. The key design parameters of an RF shield structure are the contact force between a pair of fingers and the width and length of the slit between adjacent fingers. While the former is decided by the wall beam current and wall electric field, the latter is dependent on the Higher Order Modes (HOM). The bellow will be fabricated and tested both by heating and impedance measurement.	Dr. Somjai Chunjarean and SLRI researchers

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
16	Development of high field gradient accelerating structure for	Dr. Somjai Chunjarean,
	industrial applications	Dr. Siriwan Jummunt
	Scope:	and SLRI researchers
	The industrial application is one of the key applications of electron	
	linear accelerators. An accelerating part is the most crucial component of	
	an electron linear accelerator in order to increase energy of the electrons	
	up to 10 MeV with high current. In design and development of a high field	
	gradient in normal conducting linear structures is a key issue in physics	
	research and other applications at high energy electron. One of the	
	important effects that occurs during deliver a high RF power into the linear	
	accelerator is RF breakdown leading to limitations on acceleration and	
	performance of the accelerator. This research focuses on the physical and	
	engineering design of the high-gradient accelerating structure section	
	without RF breakdown phenomena. These phenomena also require a	
	detailed study on the dedicated developed systems. The design and	
	simulation of the linear accelerator frequently use tool codes to perform	
	physics and engineering results as CST-MWS, ASTRA, Pamela which are used	
	to model electromagnetic field for acceleration in the accelerator structure	
	and follow all electron trajectories in these fields to achieve a right mode	
	of acceleration The thermal analysis and the vacuum performance are	
	studied as well with ANSYS. In order to guarantee with achieving a high-	
	performance of high-field gradient linear accelerator, the beam dynamics	
	of the electron beam are studied and simulated by using particle	
	accelerator codes.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
17	Development of sub-micron resolution Synchrotron X-ray Tomography system	Dr. Supagorn Rugmai and SLRI researchers
	Scope:	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
18	Development of Synchrotron X-ray Fluorescence system for	Dr. Supagorn Rugmai
	quantitative measurements of trace elements in solid and liquid	and SLRI researchers
	Scope:	
	The expeditious growth of modern industry as well as the exacerbate	
	human activities leave various harmful residues into environment, which	
	consequently leads to serious pollutions. Understanding, screening, and	
	fast detection of elemental compositions, and trace heavy metal	
	contaminations in such environmental samples would be beneficial to	
	avoid the widespread distribution and later solve the problems. In addition,	
	the existance of trace elements in materials could alter their	
	physicochemical properties and emerge novel characteristic features of	
	materials aiming for such specific applications. X-ray fluorescence (XRF)	
	spectroscopy is one of the potential techniques for characterization of	
	elemental compositions. XRF requires less sample preparation and can be	
	applied for various types of samples including solid, liquid, and slurry. In	
	addition, XRF provides availability for fast screening and database for quality	
	and quantity control.	
	This project aims to develop the apparatus for XRF experiments to	
	quantify the concentrations of elements in materials. The participants will	
	involve in the design of the automatic sample measurement system, for	
	example a motorized multi-sample holder, a vacuum sample chamber, a	
	user-friendly Labview-based program for the automatic data collection. The	
	participants will join the beamline scientists to test the XRF measurement	
	system, perform experiments, and do quantitative XRF analysis using	
	fundamental parameter (FP) method. Over the course of the project, the	
	participants will independently engage in a synchrotron development	
	similar to that of beamline scientists and will have a good understanding of	
	beamline instrumentation, control system, and XRF data analysis.	

No	Topics for Ph.D. Thesis by SLRI (August 2022)	Supervisor
19	Development of high field in-vacuum permanent magnet wiggler for	Dr. Siriwat Soontaranon
	high intensity hard x-ray generation	Dr. Supagorn Rugmai
	Scope:	and SLRI researchers
	In-vacuum permanent magnet wiggler is an insertion device used for	
	high intensity hard x-ray generation in the modern synchrotron radiation	
	machine. The development of this device incorporates various aspects of	
	knowledge including synchrotron radiation generation, magnetic field	
	calculation and measurement, magnet fabrication, vacuum system design,	
	high precision mechanical and control system, etc. The aim of the project	
	is to produce a prototype in-vacuum wiggler used for the 3 GeV synchrotron	
	machine. Several tools required for the project are available at the	
	Synchrotron Light Research Institute (Public Organization), such as	
	Mathematica and Radia software for magnetic field simulation. Helmholtz	
	coil, flip coil, and hall probe for magnetic field measurement. Computer	
	and software for engineering drawing and simulation of heat load/structural	
	deformation. During the research, the student will develop variety of skills	
	required to build the in-vacuum permanent magnet wiggler. This includes	
	physics and engineering of synchrotron radiation generation. Magnetic field	
	system starting from the design, simulation, fabrication, and measurement.	
	Ultra-high vacuum system and high precision assembly and control of the	
	in-vacuum permanent magnet wiggler device.	