Green Catalysts for Sustainable Energy and Environment

Waleeporn Donphai^{a,b}, Thongthai Witoon^{a,b}, Metta Chareonpanich^{a,b,*}

^a KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

^b Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Kasetsart University, Bangkok 10900, Thailand

ABSTRACT

Increasing concerns over global warming caused by greenhouse gases and depletion of fossil fuel resources have created a variety of strategic routes for sustainable energy and environment. Carbon dioxide (CO₂) and methane (CH₄) are considered to be major components of greenhouse gases, and therefore the conversion of CO₂ and CH₄ to value-added products is one of the most promising ways to mitigate the problem. This presentation is focused on the production of a group of green catalysts and adsorbents from low cost and renewable resources. The diverse applications of green catalysts for sustainable energy and environment—green energy/feedstock production via catalytic CO₂ hydrogenation under magnetic field, catalytic methane decomposition and light olefin production over functional catalysts, an application of chlorophyll-modified green catalysts for photodegradation of rhodamine B under visible-light irradiation—are reviewed. Structure-reactivity studies of green catalysts using Synchrotron light sources are discussed.

Keywords: Mesoporous silica-aluminosilicate; CO₂ hydrogenation; External magnetic field; Chlorophyll; Visible light; Green catalyst

* Corresponding authors. Tel.: +66 81810 4661; Fax: +66 2561 4621.

E-mail address: fengmtc@ku.ac.th (M. Chareonpanich)